Disipadores térmicos

Resultados : 2
Opciones de almacenamiento
Opciones ambientales
Medios de comunicación
Excluir
2Resultados
Filtros aplicados Eliminar todo

Demostración
de 2
Número de parte del fabricante
Cantidad disponible
Precio
Serie
Paquete
Estado del producto
Tipo
Paquete enfriado
Método de conexión
Forma
Longitud
Ancho
Diámetro
Altura de la aleta
Potencia disipada según aumento de temperatura
Resistencia térmica según caudal de aire forzado
Resistencia térmica en condiciones naturales
Material
Acabado de material
290-1AB
290-1AB
HEATSINK TO-220 VERT/HORZ BLK
Wakefield-Vette
21.529
En stock
1 : 0,46000 €
Granel
Granel
Activo
Nivel de placa
TO-218, TO-202, TO-220
Fijación con tornillo
Rectangular, aletas
1.180" (29.97mm)
1.000" (25.40mm)
-
0.500" (12.70mm)
2.0W a 44°C
7.00°C/W a 400 LFM
22.00°C/W
Aluminio
Negro anodizado
290-2AB 345-1021
290-2AB
HEATSINK TO-220 DUAL MNT BLK
Wakefield-Vette
5.103
En stock
1 : 0,42000 €
Granel
Granel
Activo
Nivel de placa
TO-218, TO-202, TO-220 (doble)
Fijación con tornillo
Rectangular, aletas
1.180" (29.97mm)
1.000" (25.40mm)
-
0.500" (12.70mm)
2.0W a 44°C
7.00°C/W a 400 LFM
22.00°C/W
Aluminio
Negro anodizado
Demostración
de 2

Heat Sinks


Heat sinks are thermal management components designed to dissipate heat from high-power electronic devices and prevent overheating. Their core function is based on the principles of conduction, and convection, transferring heat from a heat source—such as a CPU, power transistor, or BGA package—to the surrounding air or a coolant. By increasing the surface area in contact with cooling media, heat sinks help maintain safe temperature levels and protect component reliability and performance.

Most heat sinks are made of aluminum or copper, materials known for their high thermal conductivity. Aluminum heat sinks are lightweight and cost-effective, ideal for general-purpose cooling solutions, while copper heat sinks offer better conductivity for high-performance or space-constrained applications. Finned and extrusion-style heat sinks use strategically shaped surfaces to maximize exposure to air, enhancing natural or forced convection. Cross-cut designs further improve airflow and thermal dispersion. In advanced applications, heat pipes, liquid cooling, or graphite spreaders may be used to rapidly move heat away from the source. For compact or passive systems, passive heat exchangers rely entirely on natural airflow without the use of fans.

Proper thermal contact between the heat sink and device is critical—thermal interface materials (TIMs) such as thermal paste, pads, or solder are used to fill microscopic gaps and reduce thermal resistance. When selecting a heat sink, consider the thermal output of the component, available space, airflow conditions, and the thermal resistance of the system.