Hoja de datos de TLE7257SJ,LE de Infineon Technologies

L“ WIN-30H
Automotive Power
Data Sheet
Rev. 1.1, 2015-08-20
TLE7257
LIN Transceiver
TLE7257SJ
TLE7257LE
®
Data Sheet 2 Rev. 1.1, 2015-08-20
TLE7257
1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.1 Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.1 Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2 Normal Operation Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.3 Standby Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.4 Sleep Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.5 Bus Wake-up Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.6 Mode Transition via EN input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.7 Over-Temperature Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.8 Undervoltage Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.9 TxD Time-out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.10 3.3 V and 5 V Logic Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.11 Short Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5 General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.3 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.1 Functional Device Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.2 Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7 Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.1 Application Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.2 ESD Susceptibility according to IEC61000-4-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.3 Transient Robustness according to ISO 7637-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.4 LIN Physical Layer Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.5 TxD Fail-Safe Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.6 RxD Pull-up Resistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.7 Compatibility with other Infineon LIN Transceivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
8 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
9 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table of Contents
(ifiineon 4; / @7 EMS 4?.
Type Package Marking
TLE7257SJ PG-DSO-8 7257
TLE7257LE PG-TSON-8 7257
PG-DSO-8
PG-TSON-8
Data Sheet 3 Rev. 1.1, 2015-08-20
LIN Transceiver
TLE7257SJ
TLE7257LE
TLE7257
1Overview
Features
Single-wire LIN transceiver for transmission rates up to 20 kbps
Compliant to ISO 17987-4, LIN Specification 2.2A and SAE J2602
Very low current consumption in Sleep mode with wake-up capability
Very low leakage current on the BUS pin
Digital I/O levels compatible with 3.3 V and 5 V microcontrollers
TxD protected with dominant time-out function and state check after
mode change to Normal Operation mode
BUS short to VBAT protection and BUS short to GND handling
Over temperature protection and supply undervoltage detection
Very high ESD robustness, ± 10 kV according to IEC61000-4-2
Optimized for high electromagnetic compatibility (EMC);
Very low emission and high immunity to interference
Available in standard PG-DSO-8 and leadless PG-TSON-8 packages
PG-TSON-8 package supports Automated Optical Inspection (AOI)
Green Product (RoHS compliant)
AEC Qualified
Description
The TLE7257 is a transceiver for the Local Interconnect Network (LIN)
with integrated wake-up and protection features. It is designed for in-
vehicle networks using data transmission rates up to 20 kbps. The TLE7257 operate as a bus driver between the
protocol controller and the physical bus of the LIN network. Compliant to all LIN standards and with a wide
operational supply range the TLE7257 can be used in all automotive applications.
The usage of different operation modes and the INH output allows the TLE7257 to control external components
like e.g. voltage regulators. In Sleep mode the TLE7257 draws typically less than 10 A of quiescent current while
still being able to wake-up when detecting LIN bus traffic. The very low leakage current on the BUS pin makes the
TLE7257 especially suitable for partially supplied networks.
Based on the Infineon BiCMOS technology the TLE7257 provides excellent ESD robustness together with a very
high electromagnetic compatibility (EMC). The TLE7257 reaches a very low level of electromagnetic emission
(EME) within a broad frequency range and independent from the battery voltage. The TLE7257 is AEC qualified
and tailored to withstand the harsh conditions of the automotive environment.
@ we a
TLE7257
Block Diagram
Data Sheet 4 Rev. 1.1, 2015-08-20
2 Block Diagram
Figure 1 Block diagram
TLE7257_BLOCK_DIAGRAM
Mode
Control
BUS
TxD
EN
VS
Rslave
INH
7 8
Internal
Supply
VREF
Wake
Receiver
Over-temperature and
Over-current
Protection
6
Driver
2
4
RxD
RF-
Filter
BUS
VS/2
5
GND
1
VREF
Time-out
REN
Transmitter
Receiver
@
TLE7257
Pin Configuration
Data Sheet 5 Rev. 1.1, 2015-08-20
3 Pin Configuration
3.1 Pin Assignment
Figure 2 Pin configuration
3.2 Pin Definitions and Functions
Pin Symbol Function
1RxD Receive data output;
External pull-up necessary
Monitors the LIN bus signal in Normal Operation mode
Indicates a wake-up event in Standby mode
2EN Enable input;
Integrated pull-down resistor
Logical “high” to select Normal Operation mode
3N.C. Not Connected
4TxD Transmit data input;
Integrated pull-up current source
Logical “low” to drive a “dominant” signal on the LIN bus
5GND Ground
6BUS Bus input / output;
Integrated LIN slave termination
7VsBattery supply input;
100 nF decoupling capacitor required
8INH Inhibit output;
Battery supply related output
Active in Normal Operation mode and Standby mode
PAD1)
1)Only for PG-TSON-8 package version (TLE7257LE)
Connect to PCB heat sink area. Do not connect to other voltage potential than GND
TLE7257_PINNING
1
2
3
45
6
7
8
RxD 1
2
3
45
6
7
8
EN
N.C.
TxD
INH
VS
BUS
GND
RxD
EN
N.C.
TxD
INH
VS
BUS
GND
PG-DSO-8
PG-TSON-8
(Top side X-Ray view)
@
TLE7257
Functional Description
Data Sheet 6 Rev. 1.1, 2015-08-20
4 Functional Description
The LIN interface is a single wire, bi-directional bus, used for in-vehicle networks. The TLE7257 LIN transceiver
is the interface between the microcontroller and the physical LIN Bus (see Figure 16). Data from the
microcontroller is driven to the LIN bus via the TxD input of the TLE7257. The transmit data stream on the TxD
input is converted to a LIN bus signal with optimized slew rates in order to minimize the electromagnetic emission
level of the LIN network. The RxD output reads back the information from the LIN bus to the microcontroller. The
receiver has an integrated filter network to suppress noise from the LIN bus and to increase the electromagnetic
immunity level of the transceiver.
The LIN specification defines two valid bus states (see Figure 3):
“Dominant” state with the LIN bus voltage level near GND.
“Recessive” state with the LIN bus voltage pulled up to the supply voltage VS through the bus termination.
By setting the TxD input of the TLE7257 to a logical “low” signal, the transceiver generates a “dominant” level on
the BUS interface pin. The receiver reads back the signal on the LIN bus and indicates the “dominant” LIN bus
signal with a logical “low” level on the RxD output to the microcontroller. By setting the TxD input to logical “high”,
the transceiver sets the LIN interface pin to the “recessive” level. At the same time the “recessive” level on the LIN
bus is indicated by a logical “high” level on the RxD output.
Every LIN network consists of a master node and one or more slave nodes. To configure the TLE7257 for master
node applications, a termination resistor of 1 k and a diode must be connected between the LIN bus and the
power supply VS (see Figure 16).
Figure 3 LIN bus signals
TLE7257_LIN_COMMUNICATION
t
TxD
VCC
BUS
VS
t
t
RxD
VCC
Vth_REC
Vth_DOM
Recessive
Dominant
Recessive
@
TLE7257
Functional Description
Data Sheet 7 Rev. 1.1, 2015-08-20
4.1 Operating Modes
The TLE7257 has 3 major operation modes (see Figure 4):
Normal Operation mode
Standby mode
Sleep mode
Figure 4 Operation mode state diagram
Table 1 Operating modes
Mode EN INH TxD RxD LIN Bus Termination Comments
Sleep Low Floating Disable1)
1) The TxD input is disabled in Sleep mode and the internal pull-up current source is switched off (see Figure 1).
High2)
2) A pull-up resistor to the external microcontroller supply is required.
30 k (typical) No wake-up request detected
Standby Low High High3)
3) In case the TxD input is open the state is internally set to logical “high” through the internal pull-up current source.
Low 30 k (typical)
Normal
Operation
High High Low
High
Low
High
30 k (typical) RxD reflects the signal on the bus
TxD driven by the microcontroller
TLE7257_MODE_DIAGRAM
1) TxD: The TxD input is disabled and the pull-up current source is switched off
2) RxD: The RxD output is „high“ because of the external pull-up resistor
Normal Operation Mode
INH: High
EN: High
EN
Standby Mode
INH: High
EN: Low
TxD: High
RxD: Low
BUS Wake-up
Power-up
Sleep Mode
INH: Floating
EN: Low
TxD: Disabled 1)
RxD: High 2)
1
4
5
EN
2
3
EN
Q/“w
TLE7257
Functional Description
Data Sheet 8 Rev. 1.1, 2015-08-20
4.2 Normal Operation Mode
While operating in Normal Operation mode the LIN bus receiver and transmitter are active and support data
transmission rates up to 20 kbps. Data from the microcontroller is transmitted to the LIN bus via the TxD input.
Simultaneously the receiver detects the data stream on the LIN bus and forwards it to the RxD output.
Normal Operation mode can be entered from either Sleep mode (see Figure 9) or from Standby mode (see
Figure 5), by setting the EN input to logical “high”. From Normal Operation mode the TLE7257 can only enter
Sleep mode, it is not possible to enter Standby mode directly (see Figure 4).
The transition time for mode change to Normal Operation mode tMODE specifies the delay between the threshold,
where the EN pin detects a “high” input signal, and the actual mode change of TLE7257 to Normal Operation
mode.
Figure 5 Entering Normal Operation mode from Standby mode
Table 2 Operation mode transitions
Number Reason for transition Comment
1 Power-on detection The VS supply voltage rise above the VS,UV,PON power-on reset level
2 Mode change with EN input Triggered by logical “high” level
3 Mode change with EN input Triggered by logical “low” level
4 Mode change with EN input Triggered by logical “high” level
5 Bus wake-up detection RxD set “low” for signalling the bus wake-up event to the microcontroller
INH: „high impedance“
TxD: „high impedance“
TLE7257_NORMAL_MODE
VEN,OFF
Standby mode
tto,rec
VEN,ON
Hysteresis
Normal Operation mode Sleep mode
t
EN
t
Data transmission
RxD
t
Data transmission
TxD
t
INH
tMODE
RxD: „high“ or „low“
TxD: „high“ because
of internal pull-up
Standby mode:
Sleep mode:
tMODE
The internal pull-up current source sets the TxD input to logical „high“ in case the TxD input is open.
The internal pull-up current source is switched off and the TxD input is disabled. The TxD input is floating
in case the TxD input is open.
®
TLE7257
Functional Description
Data Sheet 9 Rev. 1.1, 2015-08-20
While the TLE7257 is in Normal Operation mode the following functions are available:
The transmitter is turned on; data on the TxD input are driven on the LIN bus.
The receiver is turned on; data on the LIN bus are monitored and signaled on the RxD output.
The BUS pin is terminated to VS via the internal termination resistor RBUS (see Figure 1).
The TxD input is pulled up via a current source to the internal power supply of the TLE7257.
The INH output is switched on.
The bus wake-up comparator is turned off.
The two-level undervoltage detection is active. In case VS drops below the undervoltage detection level the
TLE7257 blocks the transmitter and receiver. In case VS drops below the power-on reset level VS,UV,PON the
TLE7257 changes the operation mode to Standby mode after recovery (see “Undervoltage Detection” on
Page 15).
The EN input is active. A “low” signal on the EN input triggers a transition to Sleep.
After a mode change to Normal Operation the TLE7257 requires a logical “high” signal for the time tto,rec on the
TxD input before releasing the data communication (see Figure 5). The transmitter remains deactivated as long
as the signal on the TxD input remains logical “low”, preventing possible bus communication disturbance.
4.3 Standby Mode
The Standby mode is entered automatically after bus wake-up event.
In Standby mode no communication to the LIN bus is possible. The transmitter and the receiver are disabled.
While the TLE7257 is in Standby mode the following functions are available:
The transmitter is turned off, the TxD input is inactive and the bus output is permanent “recessive”.
The receiver is turned off.
The RxD output indicates a wake-up event (see Figure 4 and Table 1).
The BUS pin is terminated to VS via the internal termination resistor RBUS (see Figure 1).
The TxD input is pulled up with a current source to the internal power supply of the TLE7257.
The INH output is switched on.
In Standby mode only the power-on reset level of the undervoltage detection is active (see “Undervoltage
Detection” on Page 15).
The EN input is active. A “high” signal on the EN input triggers a transition to Normal Operation mode (see
Figure 5).
®
TLE7257
Functional Description
Data Sheet 10 Rev. 1.1, 2015-08-20
4.4 Sleep Mode
Sleep mode is a low power mode with quiescent current consumption reduced to a minimum while the device is
still able to wake-up by a message on the LIN bus.
After a power-up event the TLE7257 enters Sleep mode by default. The EN pin has an internal pull-down resistor
and the TLE7257 remains in Sleep mode until the external microcontroller applies a logical “high” signal at the EN
input.
To switch the TLE7257 from Normal Operation mode to Sleep mode, the EN input has to be set to “low”.
Conversely a logical “high” signal on the EN input sets the device directly back to Normal Operation mode (see
Figure 4). The TLE7257 can only enter Sleep mode from Normal Operation mode.
Figure 6 Entering Sleep mode from Normal Operation mode
While the TLE7257 is in Sleep mode the following functions are available:
The transmitter is turned off.
The receiver is turned off.
The BUS output is terminated to VS via the internal termination resistor RBUS (see Figure 1).
The RxD output is “high” if a pull-up resistor is connected to the external microcontroller supply.
The TxD input is disabled and the internal pull-up current source is switched off.
The INH output is switched off and is floating.
The bus wake-up comparator is active and will cause transition to Standby mode in case of a wake-up event.
In Sleep mode only the power-on reset level of the undervoltage detection is active (see “Undervoltage
Detection” on Page 15).
The EN input remains active. A “high” signal on the EN input triggers a transition to Normal Operation mode.
@
TLE7257
Functional Description
Data Sheet 11 Rev. 1.1, 2015-08-20
Figure 7 Entering Sleep mode after Power-up
TLE7257_POWER_ON
Un-powered
The device remains in Sleep Mode as long the
EN input remains „low“
VS,UV,PON
EN
VS
Sleep mode
t
RxD
t
t
External microcontroller supply: „On“External microcontroller supply: „Off“
t
®
TLE7257
Functional Description
Data Sheet 12 Rev. 1.1, 2015-08-20
4.5 Bus Wake-up Event
Figure 8 Bus wake-up behavior
A bus wake-up event, also called remote wake-up, changes the operation mode from Sleep mode to Standby
mode. A falling edge on the LIN bus, followed by a “dominant” bus signal for the time tWK,bus results in a bus wake-
up event. The mode change to Standby mode becomes active with the following rising edge on the LIN bus. The
TLE7257 remains in Sleep mode until it detects a state change on the LIN bus from “dominant” to “recessive” (see
Figure 8).
In Standby mode a logical “low” signal on the RxD output indicates a bus wake-up event.
TLE7257_BUS_WAKE
TxD1): „high impedance“
INH: „high impedance“
VBUS VBUS,wk VBUS,wk
LIN bus signal
INH
tWK,bus
t
t
EN
t
TxD
t
RxD
t
RxD: „high“ because of the external pull-up to the microcontroller supply voltage RxD: „low“ indicates bus
wake-up event
TxD1): „high“ because of
internal pull-up current source
1) In case the TxD input is open
Standby modeSleep mode
Q/“w
TLE7257
Functional Description
Data Sheet 13 Rev. 1.1, 2015-08-20
4.6 Mode Transition via EN input
Figure 9 Entering Normal Operation mode from Sleep mode
The EN input is used for operation mode control of the TLE7257. By setting the EN input logical “high” for the time
tMODE while being Sleep or Standby mode, a transition to Normal Operation mode will be triggered (see Figure 9).
The EN input has an integrated pull-down resistor to ensure the device remains in Sleep or Standby mode even
if the EN pin is left open. The EN input has an integrated hysteresis.
A signal transition from logical “high” to “low” on the EN input changes the operation mode from Normal Operation
mode to Sleep mode (see Figure 5).
The TLE7257 changes the operation modes regardless of the signal on the BUS pin. In the case of a short circuit
between the LIN bus and GND, resulting in a permanent “dominant” signal, the TLE7257 can be set to Sleep mode
by setting the EN input to logical “low”.
After a mode change to Normal Operation mode, a logical “high” signal for the time tto,rec on the TxD input is
required to release the data communication.
TLE7257_ENABLE
1) The TxD signal is driven from the external microcontroller
VEN,OFF
Sleep mode
tto,rec
VEN,ON
Hysteresis
Normal Operation mode Sleep mode
t
EN
t
Data transmission
RxD
t
Data transmission
TxD 1)
INH
tMODE tMODE
INH: „high impedance“INH: „high impedance“
t
@
TLE7257
Functional Description
Data Sheet 14 Rev. 1.1, 2015-08-20
4.7 Over-Temperature Protection
The TLE7257 has an integrated over-temperature sensor to protect the device against thermal overstress on the
transmitter. In case of an over-temperature event, the transmitter will be disabled (see Figure 10). An over-
temperature event will not cause any mode change and will not be directly indicated on the RxD output or the TxD
input.
When the junction temperature falls below the thermal shut down level TJ<TJSD, the transmitter will be
reactivated. After an over-temperature recovery the TxD input requires a logical “high” signal before restarting data
transmission.
A 10°C hysteresis avoids toggling during the temperature shut down.
Figure 10 Over-temperature shut down
TLE7257_OVER_TEMPERATURE
TxD
t
t
BUS
t
Overtemperature event Cool down
TJ
t
TJSD (shutdown temp.)
Switch-on
ΔT (shutdown hysteresis)
RxD
@ 1% U n a 4: P \\\\\\\ xxxxxxxxx \\\\\\\
TLE7257
Functional Description
Data Sheet 15 Rev. 1.1, 2015-08-20
4.8 Undervoltage Detection
Figure 11 Early undervoltage detection
The TLE7257 has undervoltage detection on the VS supply pin with two different thresholds:
In Normal Operation mode the TLE7257 blocks the communication between the LIN bus and the
microcontroller when detecting undervoltage events. However, no mode change will occur. After VS rises
above the undervoltage release level VS,UV,REL, the bus communication interface will be released when the
signal on the TxD input goes “high”. See Figure 11.
In case the VS power supply drops down below the power-on reset level VS,UV,PON the TLE7257 blocks the
communication between the LIN bus and the microcontroller, and also changes the operation mode to Sleep
mode after VS supply recovery. The power-on reset level is active in all operation modes. See Figure 12.
Figure 12 Undervoltage detection and power-on reset
TLE7257_UNDERVOLTAGE_EARLY
Supply voltage VS
Power-on reset level VS,UV,PON
Normal Operation mode Normal Operation mode
Blanking time tblank,UV
Communication blocked
Undervoltage release level VS,UV,ON
Undervoltage hysteresis VS,UV,HYS
VS
t
Undervoltage
detection level VS,UV,OFF
TLE7257_UNDERVOLTAGE_RESET
Device unpowered
Supply voltage VS
Normal Operation mode Sleep mode (EN = „low“)
Normal Operation mode (EN = “high“)
Blanking time tblank,UV
Undervoltage release level VS,UV,ON
Undervoltage hysteresis VS,UV,HYS
Power-on reset level VS,UV,PON
Communication blocked
VS
t
Undervoltage
detection level VS,UV,OFF
@ 1‘7
TLE7257
Functional Description
Data Sheet 16 Rev. 1.1, 2015-08-20
4.9 TxD Time-out
The TxD time-out feature protects the LIN bus against permanent blocking in case the logical signal on the TxD
input is continuously “low”, caused by e.g. a malfunctioning microcontroller or a short circuit on the printed circuit
board. In Normal Operation mode, a logical “low” signal on the TxD input for the time tTxD disables the output stage
of the transmitter (see Figure 13). The receiver will remain active and the data on the bus are still monitored on
the RxD output.
The TLE7257 will release the output stage after a TxD time-out event first when detecting a logical “high” signal
on the TxD input for the time tto,rec.
Figure 13 TxD time-out
4.10 3.3 V and 5 V Logic Capability
The TLE7257 can be used for 3.3 V and 5 V microcontrollers. The logic inputs and the outputs are capable to
operate with both voltage levels. The RxD output needs an external pull-up resistor to the microcontroller supply
to define the voltage level (see Chapter 7.6 “RxD Pull-up Resistor” on Page 26 and Figure 16).
4.11 Short Circuit
The BUS pin of TLE7257 can withstand short circuits to either GND or to the VS power supply. The integrated over-
temperature protection may disable the transmitter in case of a permanent short circuit on the bus pin is causing
the overheating.
TLE7257_TXD_TIMEOUT
TxD
tto,rec
tTxD
TxD time-out due to e.g. microcontroller error
Release after TxD time-out
Recovery of the microcontroller error
Normal communication Normal communication
VBUS
t
t
@
TLE7257
General Product Characteristics
Data Sheet 17 Rev. 1.1, 2015-08-20
5 General Product Characteristics
5.1 Absolute Maximum Ratings
Note: Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in the
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are
not designed for continuous repetitive operation.
Table 3 Absolute Maximum Ratings Voltages, Currents and Temperatures1)
All voltages with respect to ground; positive current flowing into pin; unless otherwise specified
1) Not subject to production test, specified by design
Parameter Symbol Values Unit Note / Test Condition Number
Min. Max.
Voltages
Battery supply voltage VS-0.3 40 V LIN Spec 2.2A (Par. 11) 1.1.1
BUS input voltage VBUS,G -27 40 V – 1.1.2
Logic voltages at EN, TxD, RxD Vlogic -0.3 6.0 V – 1.1.3
INH voltage VINH -0.3 VS + 0.3 V 1.1.4
Currents
Output current at RxD IRxD 0 15 mA – 1.2.1
Output current at INH IINH -5 5 mA – 1.2.2
Temperatures
Junction temperature Tj-40 150 °C – 1.3.1
Storage temperature Ts-55 150 °C – 1.3.2
ESD Susceptibility
Electrostatic discharge voltage
at VS, BUS
VESD -10 10 kV Human Body Model
(100 pF via 1.5 k)2)
2) ESD susceptibility HBM according to ANSI / ESDA / JEDEC JS-001
1.4.1
Electrostatic discharge voltage
all other pins
VESD -4 4 kV Human Body Model
(100 pF via 1.5 k)2)
1.4.2
Electrostatic discharge voltage
all pins
VESD -1 1 kV Charged Device Model3)
3) ESD susceptibility, Charged Device Model “CDM” EIA / JESD 22-C101 or ESDA STM5.3.1
1.4.3
@
TLE7257
General Product Characteristics
Data Sheet 18 Rev. 1.1, 2015-08-20
5.2 Functional Range
Note: Within the functional range the IC operates as described in the circuit description. The electrical
characteristics are specified within the conditions given in the related electrical characteristics table.
5.3 Thermal Characteristics
Note: This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go
to www.jedec.org.
Table 4 Operating Range
Parameter Symbol Values Unit Note / Test Condition Number
Min. Max.
Supply Voltages
Extended supply voltage range
for operation
VS(ext) 18 40 V Parameter deviations
possible
2.1.1
Supply voltage range for normal
operation
VS(nor) 5.5 18 V LIN Spec 2.2A (Par. 10) 2.1.2
Thermal Parameters
Junction temperature Tj-40 150 °C 1)
1) Not subject to production test, specified by design
2.2.1
Table 5 Thermal Resistance1)
1) Not subject to production test, specified by design
Parameter Symbol Values Unit Note / Test Condition Num
ber
Min. Typ. Max.
Thermal Resistance, PG-DSO-8 Package Version
Junction ambient RthJA 130 K/W 2)
2) Specified RthJA value is according to Jedec JESD51-2,-7 at natural convection on FR4 2s2p board; The Product (TLE7257)
was simulated on a 76.2 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70 mm Cu, 2 x 35 mm Cu). Where
applicable a thermal via array under the exposed pad contacted to the first inner copper layer.
3.1.1
Thermal Resistance, PG-TSON-8 Package Version
Junction ambient RthJA –60–K/W
2) 3.2.1
190 K/W 3)
3) Specified RthJA value is according to Jedec JESD51-3 at natural convection on FR4 1s0p board; The product (TLE7257)
was simulated on a 76.2 x 114.3 x 1.5 mm board with 1 inner copper layer (1 x 70 mm Cu).
3.2.2
–70–K/W300mm
2 heatsink on PCB3) 3.2.3
Thermal Shutdown Junction Temperature
Thermal shutdown temperature TJSD 150 175 200 °C 3.3.1
Thermal shutdown hysteresis T 10 K – 3.3.2
@
TLE7257
Electrical Characteristics
Data Sheet 19 Rev. 1.1, 2015-08-20
6 Electrical Characteristics
6.1 Functional Device Characteristics
Table 6 Electrical Characteristics
5.5 V < VS<18V; RL= 500 ; -40°C < Tj<150°C;
all voltages with respect to ground; positive current flowing into pin; unless otherwise specified.
Parameter Symbol Values Unit Note / Test Condition Num
ber
Min. Typ. Max.
Current Consumption
Current consumption at VS,
Recessive state
IS,rec 0.1 0.6 2.0 mA INH open, without RL;
VTxD =“high
4.1.1
Current consumption at VS,
Dominate state
IS,dom 0.1 1.1 3.0 mA INH open, without RL;
VTxD =0V
4.1.2
Current consumption at VS,
Standby mode
IS,standby 100 350 900 μA Standby mode,
VBUS =VS
4.1.3
Current consumption at VS,
Sleep mode
IS,sleep,typ 11015μA Sleep mode, Tj<40°C;
VS = 13.5 V; VBUS =VS
4.1.4
Current consumption at VS,
Sleep mode
IS,sleep 11025μA Sleep mode,
VBUS =V
S
4.1.5
Current consumption at VS,
Sleep mode.
Bus shorted to GND
IS,SC_GND 100 – 700 μA Sleep mode,
VS=13.5V; VBUS =0V
4.1.6
Undervoltage Detection
Power-on reset level on VSVS,UV,PON 4.3 V Reset level for mode change 4.2.1
Undervoltage threshold, VS on VS,UV,ON 4.7 5.15 5.5 V Rising edge 4.2.2
Undervoltage threshold, VS off VS,UV,OFF 4.4 4.85 5.2 V Falling edge 4.2.3
Undervoltage detection
hysteresis
VS,UV,HYS –300–mV
1) 4.2.4
Undervoltage blanking time tBLANK,UV –10μs1) 4.2.5
Receiver Output: RxD
“High” level leakage current IRD,H,leak ––5μAVRxD = 5 V; VBUS = VS4.3.1
“Low” level output current IRD,L 1.3––mAVRxD = 0.4 V; VBUS = 0 V 4.3.2
Transmission Input: TxD
“High” level input voltage range VTD,H 2 6.0 V Recessive state 4.4.1
“Low” level input voltage range VTD,L -0.3 0.8 V Dominant state 4.4.2
Input hysteresis VTD,hys –200–mV
1) 4.4.3
Pull-up current ITD -60 – -20 μAVTxD = 0 V; Normal Operation
mode or Standby mode
4.4.4
Enable Input: EN
“High” level input voltage range VEN,ON 2 6.0 V Normal Operation mode 4.5.1
@
TLE7257
Electrical Characteristics
Data Sheet 20 Rev. 1.1, 2015-08-20
“Low” level input voltage range VEN,OFF -0.3 0.8 V Sleep mode or Standby
mode
4.5.2
Input hysteresis VEN,hys –200–mV
1) 4.5.3
Pull-down resistance REN 15 30 60 k– 4.5.4
Inhibit Output: INH
Inhibit voltage drop VINH ––1.0VIINH = -2.0 mA 4.6.1
Leakage current IINH,lk -5.0 – 5.0 μA Sleep mode; VINH = 0 V 4.6.2
Bus Receiver: BUS
Receiver threshold voltage,
recessive to dominant edge
Vth_dom 0.4
×VS
0.44
×VS
V – 4.7.1
Receiver dominant state VBUSdom ––0.4
×VS
V LIN Spec 2.2A (Par. 17) 4.7.2
Receiver threshold voltage,
dominant to recessive edge
Vth_rec –0.56
×VS
0.6
×VS
V – 4.7.3
Receiver recessive state VBUSrec 0.6
×VS
V LIN Spec 2.2A (Par. 18) 4.7.4
Receiver center voltage VBUS_CNT 0.475
×VS
0.5
×VS
0.525
×VS
V LIN Spec 2.2A (Par. 19)2) 4.7.5
Receiver hysteresis VHYS 0.07
×VS
0.12
×VS
0.175
×VS
V LIN Spec 2.2A (Par. 20)3) 4.7.6
Wake-up threshold voltage VBUS,wk 0.40
×VS
0.5
×VS
0.6
×VS
V – 4.7.7
Bus Transmitter: BUS
Bus recessive output voltage VBUS,ro 0.8
×VS
VSVVTxD = “high”;
Open load
4.8.1
Bus short circuit current IBUS_LIM 40 85 125 mA VBUS = 13.5 V;
LIN Spec 2.2A (Par. 12);
4.8.2
Leakage current IBUS_NO_GND -1 -0.5 mA VS = 0 V; VBUS =-12V;
LIN Spec 2.2A (Par. 15)
4.8.3
Leakage current IBUS_NO_BAT –15μAVS = 0 V; VBUS = 18 V;
LIN Spec 2.2A (Par. 16)
4.8.4
Leakage current IBUS_PAS_do
m
-1 -0.5 mA VS = 18 V; VBUS = 0 V;
LIN Spec 2.2A (Par. 13)
4.8.5
Leakage current IBUS_PAS_rec –15μAVS = 8 V; VBUS = 18 V; 4.8.6
Forward voltage serial diode VSerDiode 0.4– 1.0VISerDiode = 75 μA;
LIN Spec 2.2A (Par. 21)
4.8.7
Bus pull-up resistance Rslave 20 40 60 kLIN Spec 2.2A (Par. 26) 4.8.8
Table 6 Electrical Characteristics (cont’d)
5.5 V < VS<18V; RL= 500 ; -40°C < Tj<150°C;
all voltages with respect to ground; positive current flowing into pin; unless otherwise specified.
Parameter Symbol Values Unit Note / Test Condition Num
ber
Min. Typ. Max.
@
TLE7257
Electrical Characteristics
Data Sheet 21 Rev. 1.1, 2015-08-20
Bus dominant output voltage
maximum load
VBUS,do
1.4
2.0
V
V
VTxD = 0 V; RL = 500 ;
VS =7 V;
VS =18 V;
4.8.9
Dynamic Transceiver Characteristics
Propagation delay:
LIN bus dominant to RxD “low”
LIN bus recessive to RxD “high”
trx_pdft
trx_pdr
1
1
3.5
3.5
6
6
μs
μs
LIN Spec 2.2A (Par. 31)
RRxD = 2.4 k; CRxD = 20 pF
4.9.1
Receiver delay symmetry trx_sym -2 – 2 μs LIN Spec 2.2A (Par. 32)
trx_sym = trx_pdf - trx_pdr;
RRxD = 2.4 k; CRxD = 20 pF
4.9.2
Dominant time for bus wake-up tWK,bus 30 150 μs – 4.9.3
Delay time for mode change tMODE ––50μs4) 4.9.4
TxD time-out tTxD 8 1828ms 4.9.5
TxD recessive time to release
transmitter
tto,rec ––10μs1) 4.9.6
Duty cycle D1
(for worst case at 20 kBit/s)
D1 0.396 Duty cycle 1 5)
THRec(max) = 0.744 × VS;
THDom(max) =0.581 × VS;
VS = 7.0 … 18 V; tbit = 50 μs;
D1 = tbus_rec(min) / 2 × tbit;
LIN Spec 2.2A (Par. 27)
4.9.7
Duty cycle D1
for VS supply 5.5 V to 7.0 V
(for worst case at 20 kBit/s)
D1 0.396 Duty cycle 1 5)
THRec(max) = 0.760 × VS;
THDom(max) = 0.593 × VS;
5.5 V < VS<7.0V;
tbit = 50 μs;
D1 = tbus_rec(min) / 2 × tbit
4.9.8
Duty cycle D2
(for worst case at 20 kBit/s)
D2 0.581 Duty cycle 2 5)
THRec(min)= 0.422 × VS;
THDom(min)= 0.284 × VS;
VS = 7.6 … 18 V; tbit = 50 μs;
D2 = tbus_rec(max) / 2 × tbit;
LIN Spec 2.2A (Par. 28)
4.9.9
Duty cycle D2
for VS supply 6.1 V to 7.6 V
(for worst case at 20 kBit/s)
D2 0.581 Duty cycle 2 5)
THRec(min)= 0.410 × VS;
THDom(min)= 0.275 × VS;
6.1 V < VS<7.6V;
tbit = 50 μs;
D2 = tbus_rec(max) / 2 × tbit
4.9.10
Table 6 Electrical Characteristics (cont’d)
5.5 V < VS<18V; RL= 500 ; -40°C < Tj<150°C;
all voltages with respect to ground; positive current flowing into pin; unless otherwise specified.
Parameter Symbol Values Unit Note / Test Condition Num
ber
Min. Typ. Max.
@
TLE7257
Electrical Characteristics
Data Sheet 22 Rev. 1.1, 2015-08-20
Duty cycle D3
(for worst case at 10.4 kBit/s)
D3 0.417 Duty cycle 3 5)
THRec(max) = 0.778 × VS;
THDom(max) =0.616 × VS;
VS = 7.0 … 18 V; tbit = 96 μs;
D3 = tbus_rec(min) / 2 × tbit;
LIN Spec 2.2A (Par. 29)
4.9.11
Duty cycle D3
for VS supply 5.5 V to 7.0 V
(for worst case at 10.4 kBit/s)
D3 0.417 Duty cycle 3 5)
THRec(max) = 0.797 × VS;
THDom(max) = 0.630 × VS;
5.5 V < VS<7.0V;
tbit = 96 μs;
D3 = tbus_rec(min) / 2 × tbit;
4.9.12
Duty cycle D4
(for worst case at 10.4 kBit/s)
D4 0.590 Duty cycle 4 5)
THRec(min) = 0.389 × VS;
THDom(min) = 0.251 × VS;
VS = 7.6 … 18 V; tbit = 96 μs;
D4 = tbus_rec(max) / 2 × tbit;
LIN Spec 2.2A (Par. 30)
4.9.13
Duty cycle D4
for VS supply 6.1 V to 7.6 V
(for worst case at 10.4 kBit/s)
D4 0.590 Duty cycle 4 5)
THRec(min) = 0.378 × VS;
THDom(min)= 0.242 × VS;
6.1 V < VS<7.6V;
tbit = 96 μs;
D4 = tbus_rec(max) / 2 × tbit;
4.9.14
1) Not subject to production test, specified by design
2) VBUS_CNT =(Vth_dom +Vth rec)/2
3) VHYS =Vth_rec -Vth_dom
4) Delay time specified for a load of 10 k/ 20 pF on the INH output
5) Bus load concerning LIN Spec 2.2A:
Load 1 = 1 nF / 1 k=CBUS /RL
Load 2 = 6.8 nF / 660 =CBUS /RL
Load 3 = 10 nF / 500 =CBUS /RL
Table 6 Electrical Characteristics (cont’d)
5.5 V < VS<18V; RL= 500 ; -40°C < Tj<150°C;
all voltages with respect to ground; positive current flowing into pin; unless otherwise specified.
Parameter Symbol Values Unit Note / Test Condition Num
ber
Min. Typ. Max.
@ HP
TLE7257
Electrical Characteristics
Data Sheet 23 Rev. 1.1, 2015-08-20
6.2 Diagrams
Figure 14 Simplified test circuit
Figure 15 Timing diagram for dynamic characteristics
TLE7257_TEST_CIRCUIT
GND
BUS
RL
EN
RxD
100 nF
VS
CBus
INH
TxD RRxD
CRxD
RINH VIO = 5 V
TLE7257_LIN_TIMING_DIAGRAM
Duty Cycle D1, D3 = t
BUS_rec(min)
/ (2 x t
BIT
)
Duty Cycle D2, D4 = t
BUS_rec(max)
/ (2 x t
BIT
)
t
Bit
t
Bit
t
Bit
t
Bus_dom(max)
t
Bus_rec(min)
Thresholds of receiving node 1
TH
Rec(max)
TH
Dom(max)
TH
Rec(min)
TH
Dom(min)
t
Bus_dom(min)
t
Bus_rec(max)
t
rx_pdf(1)
t
rx_pdr(1)
t
rx_pdf(2)
t
rx_pdr(2)
V
SUP
(Transceiver supply of
transmitting node)
TxD
(input to transmitting node)
RxD
(output of receiving node 2)
RxD
(output of receiving node 1)
Thresholds of receiving node 2
@
TLE7257
Application Information
Data Sheet 24 Rev. 1.1, 2015-08-20
7 Application Information
Note: The following information is given as a hint for the implementation of the device only and shall not be
regarded as a description or warranty of a certain functionality, condition or quality of the device.
7.1 Application Example
Figure 16 Simplified application circuit
TLE7257_APPLICATION
TLE7257
GND
Micro Controller
e.g XC22xx
VS
VBat
LIN
BUS
Master Node
BUS
TLE42xx
22μF 100nF
1nF
5 V or 3.3V
ECU_1
Pull-up to
MCU Supply
2.4kΩ
1
2
4
5
78
6
10μF 100nF
VQ
GND INH
VI
1kΩ
INH
RxD
TxD
EN
GND
VCC
100nF
TLE7257
GND
Micro Controller
e.g XC22xx
VS
Slave Node
BUS
TLE42xx
22μF 100nF
220pF
5 V or 3.3V
ECU_X
Pull-up to
MCU Supply
2.4kΩ
1
2
4
5
78
6
10μF 100nF
VQ
GND INH
VI
INH
RxD
TxD
EN
GND
VCC
100nF
10kΩ
@
TLE7257
Application Information
Data Sheet 25 Rev. 1.1, 2015-08-20
7.2 ESD Susceptibility according to IEC61000-4-2
Test for ESD robustness according to IEC61000-4-2 “Gun test” (150 pF, 330 ) have been performed. The results
and test conditions are available in a separate test report.
7.3 Transient Robustness according to ISO 7637-2
Test for transient robustness according to ISO 7637-2 have been performed. The results and test conditions are
available in a separate test report.
7.4 LIN Physical Layer Compatibility
The TLE7257 fulfills the Physical Layer Specification of LIN 1.2, 1.3, 2.0, 2.1, 2.2 and 2.2A.
The differences between LIN specification 1.2 and 1.3 is mainly the physical layer specification. The reason was
to improve the compatibility between the nodes.
The LIN specification 2.0 is a super set of the 1.3 version. The 2.0 version offers new features. However, it is
possible to use the LIN 1.3 slave node in a 2.0 node cluster, as long as the new features are not used. Vice versa
it is possible to use a LIN 2.0 node in the 1.3 cluster without using the new features.
In terms of the physical layer the LIN 2.1, LIN 2.2 and LIN 2.2A Specification does not include any changes and
is fully compliant to the LIN Specification 2.0.
LIN 2.2A is the latest version of the LIN specification, released in December 2010. The physical layer specification
of LIN 2.2A will be included in the ISO 17987-4 without modifications.
Additionally, the TLE7257 is compliant to the SAE J2602-2 standard for usage in the US automotive market.
7.5 TxD Fail-Safe Input
The TxD input has an internal pull-up structure to avoid any bus disturbance in case the TxD input is open and
floating. In case of an not connected TxD input, the pin is pulled to an internal voltage supply (see Figure 1) and
the output to the LIN bus on the BUS pin is always “recessive”. Therefore the TLE7257 can not disturb the
communication on the LIN bus.
In order to optimize the quiescent current of the TLE7257 in Sleep mode, the pull-up structure inside the TxD input
is disabled in Sleep mode. The logic inside the TxD input is not reacting at any signal change provide to the TxD
input pin and the transmitter is turned off. In Sleep mode the TLE7257 can not disturb or block the LIN bus in any
case.
Table 7 ESD Susceptibility according to IEC61000-4-2
Performed Test Result Unit Remarks
Electrostatic discharge voltage at pin VS, BUS versus GND +10 kV 1)Positive pulse
1) ESD susceptibility “ESD GUN” according IEC 61000-4-2, tested by external test house.
Electrostatic discharge voltage at pin VS, BUS versus GND -10 kV 1)Negative pulse
Table 8 Automotive Transient Robustness according to ISO 7637-2
Performed Test Result Unit Remarks
Pulse 1 -100 V 1)
1) Automotive Transient Robustness according to ISO 7637-2, tested by external test house.
Pulse 2 +75 V 1)
Pulse 3a -150 V 1)
Pulse 3b +100 V 1)
@
TLE7257
Application Information
Data Sheet 26 Rev. 1.1, 2015-08-20
7.6 RxD Pull-up Resistor
The receive data output (RxD) provides an open drain behavior for allowing the output level to be adapted to the
microcontroller supply voltage. Thus 3.3 V microcontroller derivatives without 5 V tolerant ports can be used. In
case the microcontroller port pin does not provide an integrated pull-up, an external pull-up resistor connected to
the microcontroller’s VCC supply voltage is required.
The typical RxD pin current / voltage characteristic over temperature is given in Figure 17. With the applications
microcontroller port pins’ (Rx) minimum “high”-level and maximum “low”-level input voltage the pull-up resistor can
be dimensioned. For most applications a pull-up resistor RRx of 2.4 k is recommended.
Figure 17 Typical RxD output sink characteristics
Table 9 TxD Termination
Operation Mode Remarks
Normal Operation mode The internal pull-up structure is active, in case the TxD input is open the
TxD input signal is “high” and the output on the BUS pin is “recessive”
Standby mode The internal pull-up structure is active, in case the TxD input is open the
TxD input signal is “high”. In Standby mode the transmitter is turned off
and therefore the output on the BUS pin always is “recessive
Sleep mode The internal pull-up structure is inactive, in case the TxD input is open the
TxD input signal is “floating”. In Sleep mode the transmitter is turned off
and therefore the output on the BUS pin always is “recessive
0 1 2 3 4 5 6 7 8
0
0.2
0.4
0.6
0.8
1
1.2
1.4
IRxD [mA]
VRxD [V]
Tj = −40°C
Tj = 27°C
Tj = 150°C
Ineon W BEEB 3 [[[E EBEE [[[E BEEB O [[[E
TLE7257
Application Information
Data Sheet 27 Rev. 1.1, 2015-08-20
7.7 Compatibility with other Infineon LIN Transceivers
Infineon offers a complete LIN transceiver family consisting of devices in PG-DSO-8 package (TLE7257SJ,
TLE7258SJ and TLE7259-3GE) and PG-TSON-8 package (TLE7257LE, TLE7258D, TLE7258LE and TLE7259-
3LE). All these devices are pin-to-pin compatible, with the only differences at the pins named N.C. ( = Not
Connected). The N.C. pins can be left open on the PCB in applications where these functionalities are not needed.
The N.C. pins are internally not bonded, so the devices will not be affected if these pins are connected to signals
on the application PCB.
Figure 18 Pin compatibility between TLE7257SJ, TLE7258SJ and TLE7259-3GE
The functional difference between the devices in the Infineon LIN transceiver family is summarized in Table 10
and in Table 11. For mode details on the functional and parametric differences, please refer to the respective
part’s datasheet.
Table 10 Functionality of LIN transceiver family, PG-DSO-8 package
Device TLE7257SJ TLE7258SJ TLE7259-3GE
Applications Standard LIN
Master node
Standard LIN
Slave node
High End LIN
All kind of nodes
Features
Fast Programming mode
Local Wake input
Inhibit output usage VREG control VREG control VREG control
Master Termination
TxD Time-out ✔✔✔
Power-Up mode Sleep mode Standby mode Standby mode
TLE7259-3GE
RxD
EN
N.C.
TxD
INH
VS
BUS
GND
TLE7257SJ
RxD
EN
N.C.
TxD
INH
VS
BUS
GND
TLE7258SJ
RxD
EN
WK
TxD
INH
VS
BUS
GND
1
2
3
45
6
7
8
1
2
3
45
6
7
8 1
2
3
45
6
7
8
@
TLE7257
Application Information
Data Sheet 28 Rev. 1.1, 2015-08-20
Figure 19 Pin compatibility between TLE7257LE, TLE7258LE, TLE7258D and TLE7259-3LE
Table 11 Functionality of LIN transceiver family, PG-TSON-8 package
Device TLE7257LE TLE7258LE TLE7258D TLE7259-3LE
Applications Standard LIN
Master node
Standard LIN
Slave node
K-Line
MOST ECL
High End LIN
All kind of nodes
Features
Fast Programming mode
Local Wake input
Inhibit output usage VREG controlVREG control– VREG control
Master Termination
TxD Time-out ✔✔
Power-Up mode Sleep mode Standby mode Standby mode Standby mode
(Top side X-Ray view)
TLE7259-3LE
1
2
3
45
6
7
8
RxD
EN
N.C.
TxD
INH
VS
BUS
GND
TLE7257LE
1
2
3
45
6
7
8
RxD
EN
N.C.
TxD
N.C.
VS
BUS
GND
TLE7258D
1
2
3
45
6
7
8
RxD
EN
N.C.
TxD
INH
VS
BUS
GND
TLE7258LE
1
2
3
45
6
7
8
RxD
EN
WK
TxD
INH
VS
BUS
GND
@ l 17 l gfi 1 71—!» J , + hflp:/lwww.infineon.comlpackages.
TLE7257
Package Outlines
Data Sheet 29 Rev. 1.1, 2015-08-20
8 Package Outlines
Figure 20 PG-DSO-8 (Plastic Dual Small Outline PG-DSO-8-44)
Figure 21 PG-TSON-8 (Plastic Thin Small Outline Nonleaded PG-TSON-8-1)
Green Product (RoHS compliant)
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with
government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e. Pb-
free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).
+0.06
0.19
0.35 x 45˚
1)
-0.2
4
C
8 MAX.
0.64
±0.2
6
±0.25
0.2 8x
M
C
1.27
+0.1
0.41 0.2
M
A
-0.06
1.75 MAX.
(1.45)
±0.07
0.175
B
8x
B
2)
Index Marking
5
-0.21)
41
85
A
1) Does not include plastic or metal protrusion of 0.15 max. per side
2) Lead width can be 0.61 max. in dambar area
GPS01181
0.1
±0.1
0.4
Pin 1 Marking Pin 1 Marking
PG-TSON-8-1-PO V01
±0.1
0.2
±0.1
0.25
0.81
±0.1
2.4
±0.1
0.1
±0.1
0.3
±0.1
0.38
±0.1
0.3
±0.1
0.65
±0.1
3
±0.1
3
±0.1
0
+0.05
1
±0.1
0.56
±0.1
1.63
±0.1
1.58
±0.1
0.07 MIN.
0.05
For further information on alternative packages, please visit our website:
http://www.infineon.com/packages.Dimensions in mm
@
TLE7257
Revision History
Data Sheet 30 Rev. 1.1, 2015-08-20
9 Revision History
Table 12 Revision History
Revision Data Changes
1.1 2015-08-20 Data Sheet updated based on Data Sheet Rev. 1.0.
Marking of SJ type updated:
Chapter 1, Overview
1.0 2013-10-16 Data Sheet created.
Edition 2015-08-20
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2015 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.