Data Sheet AD7091
TERMINOLOGY
Integral Nonlinearity (INL)
INL is the maximum deviation from a straight line passing
through the endpoints of the ADC transfer function. For the
AD7091, the endpoints of the transfer function are zero scale
(a point 0.5 LSB below the first code transition) and full scale
(a point 0.5 LSB above the last code transition).
Differential Nonlinearity (DNL)
DNL is the difference between the measured and the ideal
1 LSB change between any two adjacent codes in the ADC.
Offset Error
Offset error is the deviation of the first code transition (00 … 000
to 00 … 001) from the ideal (such as GND + 0.5 LSB).
Gain Error
Gain error is the deviation of the last code transition (111 … 110
to 111 … 111) from the ideal (such as VDD − 1.5 LSB) after the
offset error has been adjusted out.
Track-and-Hold Acquisition Time
The track-and-hold amplifier returns to track mode after the
end of a conversion. The track-and-hold acquisition time is the
time required for the output of the track-and-hold amplifier to
reach its final value, within ±0.5 LSB, after a conversion.
Signal-to-Noise Ratio (SNR)
SNR is the measured ratio of signal to noise at the output of the
ADC. The signal is the rms amplitude of the fundamental. Noise
is the sum of all nonfundamental signals up to half the sampling
frequency (fSAMPLE/2), excluding dc.
The ratio is dependent on the number of quantization levels in the
digitization process: the more levels, the smaller the quantization
noise. The theoretical signal-to-noise ratio for an ideal N-bit
converter with a sine wave input is given by
Signal-to-Noise Ratio = (6.02N + 1.76) dB
Therefore, for a 12-bit converter, the SNR is 74 dB.
Signal-to-Noise-and-Distortion Ratio (SINAD)
SINAD is the measured ratio of signal to noise and distortion
at the output of the ADC. The signal is the rms value of the sine
wave, and noise is the rms sum of all nonfundamental signals up
to half the sampling frequency (fSAMPLE/2), including harmonics,
but excluding dc.
Total Unadjusted Error (TUE)
TUE is a comprehensive specification that includes the gain,
linearity, and offset errors.
Total Harmonic Distortion (THD)
THD is the ratio of the rms sum of harmonics to the funda-
mental. For the AD7091, THD is defined as
()
1
6
5
4
32
V
V
V
VV
V
THD
2
22
2
2
log20
dB +
++
+
=
where:
V1 is the rms amplitude of the fundamental.
V2, V3, V4, V5, and V6 are the rms amplitudes of the second
through the sixth harmonics.
Spurious-Free Dynamic Range (SFDR)
SFDR, also known as peak harmonic or spurious noise, is defined
as the ratio of the rms value of the next largest component in the
ADC output spectrum (up to fSAMPLE/2 and excluding dc) to the
rms value of the fundamental.
Aperture Delay
Aperture delay is the measured interval between the leading edge of
the sampling clock and the point at which the ADC samples data.
Aperture Jitter
Aperture jitter is the sample-to-sample variation in the effective
point in time at which the data is sampled.
Full Power Bandwidth
Full power bandwidth is the input frequency at which the ampli-
tude of the reconstructed fundamental is reduced by 0.1 dB or
3 dB for a full-scale input.
Rev. B | Page 9 of 20